
J
H
E
P
1
0
(
2
0
0
7
)
1
0
7

Published by Institute of Physics Publishing for SISSA

Received: August 24 , 2007

Accepted: October 18, 2007

Published: October 31, 2007

Testing gluino spin with three-body decays
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(LHC). We focus on the case when all kinematically allowed tree-level decays of this particle

are 3-body decays into two jets and a massive daughter (typically weak gaugino or Kaluza-

Klein weak gauge boson). We show that the shapes of the dijet invariant mass distributions

differ significantly in the two models, as long as the mass of the decaying particle mA is

substantially larger than the mass of the massive daughter mB. We present a simple

analysis estimating the number of events needed to distinguish between the two models

under idealized conditions. For example, for mA/mB = 10, we find the required number of

events to be of order several thousand, which should be available at the LHC within a few

years. This conclusion is confirmed by a parton level Monte Carlo study which includes

the effects of experimental cuts and the combinatoric background.
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1. Introduction

Very soon, experiments at the Large Hadron Collider (LHC) will begin direct exploration of

physics at the TeV scale. Strong theoretical arguments suggest that this physics will include

new particles and forces not present in the Standard Model (SM). Several theoretically

motivated extensions of the Standard Model at the TeV scale have been proposed. After

new physics discovery at the LHC, the main task of the experiments will be to determine

which of the proposed models, if any, is correct.

Unfortunately, there exists a broad and well-motivated class of SM extensions for which

this task would be highly non-trivial. In these models, the new TeV-scale particles carry

a new conserved quantum number, not carried by the SM states. The lightest of the new

particles is therefore stable. Furthermore, the stable particle interacts weakly, providing a

very attractive “weakly interacting massive particle” (WIMP) candidate for dark matter

with relic abundance naturally in the observed range. Models of this class include the

minimal supersymmetric standard model (MSSM) and a variety of other supersymmetric

models with conserved R parity, Little Higgs models with T parity (LHT), and models

with universal extra dimensions (UED) with Kaluza-Klein (KK) parity. All these models

have a common signature at a hadron collider: pair-production of new states is followed by

their prompt decay into visible SM states and the lightest new particle, which escapes the

detector without interactions leading to a “missing transverse energy” signature. If this
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universal signature is observed at the LHC, how does one determine which of these models

is realized?

One crucial difference between the MSSM and models such as LHT or UED is the

correlation between spins of the new particles and their gauge charges. In all these models,

all (or many of) the new states at the TeV scale can be paired up with the known SM

particles, with particles in the same pair carrying identical gauge charges. However, while

in the LHT and UED models the two members of the pair have the same spin, in the

MSSM and other supersymmetric models their spins differ by 1/2. Thus, measuring the

spin of the observed new particles provides a way to discriminate among models.

Experimental determination of the spin of a heavy unstable particle with one or more

invisible daughter(s) in hadron collider environment is a difficult task. One possibile ap-

proach, which recently received considerable attention in the literature [1 – 7], is to use

angular correlations between the observable particles emitted in subsequent steps of a cas-

cade decay, which are sensitive to intermediate particle spins. This strategy is promising,

but its success depends on the availability of long cascade decay chains, which may or may

not occur depending on the details of the new physics spectrum. It is worth thinking about

other possible strategies for spin determination.

In this paper, we explore the possibility of using 3-body decays of heavy new particles

to determine their spin. The most interesting example is the 3-body decay of the MSSM

gluino into a quark-antiquark pair and a weak gaugino,

g̃ → q + q̄ + χ. (1.1)

In a large part of the MSSM parameter space, this decay has a large branching ratio: this

occurs whenever all squarks are heavier than the gluino. Under the same condition, gluino

pair-production dominates the SUSY signal at the LHC. The main competing gluino decay

channel in this parameter region is a two-body decay g̃ → gχ, which first arises at one-loop

level and generically has a partial width comparable to the tree-level decay (1.1). The

gluino decay patterns in this parameter region have been analyzed in detail in ref. [8].

We will argue that the invariant mass distribution of the jets produced in reaction (1.1)

contains non-trivial information about the gluino spin, and can be used to distinguish this

process from, for example, its UED counterpart, g1 → q + q̄ + B1/W 1.

It is important to note that the jet invariant mass distribution we study depends not

just on the spin of the decaying particle, but also on the helicity structure of the couplings

which appear in the decay (1.1), as well as on the masses of the decaying particle, the

invisible daughter, and the off-shell particles mediating the decay. If all these parameters

were measured independently, the jet invariant mass distribution would unambiguously de-

termine the spin. However, independent determination of many of the relevant parameters

will be very difficult or impossible at the LHC. In this situation, proving the spin-1/2 na-

ture of the decaying particle requires demonstrating that the experimentally observed curve

cannot be fitted with any of the curves predicted by models with other spin assignments,

independently of the values of the unknown parameters. This considerably complicates our

task. Still, interesting information can be extraced. For example, we will show that, even

if complete ignorance of the decaying and intermediate particle masses is assumed, the jet
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invariant mass distribution allows one to distinguish between the decay (1.1) in the MSSM

and its UED counterpart (assuming the couplings specified by each model) at the LHC.

The paper is organized as follows. After setting up our notation and reviewing the

basics of three-body kinematics in section 2, we present a simple toy model showing how

dijet invariant mass distributions from three-body decays can be used to probe the nature

of the decaying particle and its couplings in section 3. Section 4 discusses using this

observable for MSSM/UED discrimination, and contains the main results of the paper.

Section 5 contains the conclusions. Appendix A contains the polarization analysis of the

decay g1 → q + q̄ + B1/W 1 in UED, which sheds some light on the main features of the

dijet invariant mass distribution in this case. Appendix B contains a brief review of the

Kullback-Leibler distance, a statistical measure used in our analysis.

2. The setup and kinematics

We are interested in three-body decays of the type

A → q + q̄ + B, (2.1)

where A and B are TeV-scale particles. The main focus of this paper will be on the

case when A is the gluino of the MSSM or the KK gluon of the UED model, and B is a

neutalino or chargino of the MSSM or a KK electroweak gauge boson of the UED; however

the discussion in this section applies more generally. We assume that q and q̄ are massless,

and denote their four-momenta by p1 and p2 respectively. To describe the kinematics in

Lorentz-invariant terms, we introduce the “Mandelstam variables”,

m2
12 ≡ s = (p1 + p2)

2 = (pA − pB)2 ,

m2
1B ≡ u = (p1 + pB)2 = (pA − p2)

2 ,

m2
2B ≡ t = (p2 + pB)2 = (pA − p1)

2 , (2.2)

of which only two are independent since

s + t + u = m2
A + m2

B. (2.3)

The allowed ranges for the Mandelstam variables are determined by energy and momentum

conservation; in particular,

0 ≤ s ≤ smax ≡ (mA − mB)2. (2.4)

We will assume that pB cannot be reconstructed, either because B is unobservable or is

unstable with all decays containing unobservable daughters. Moreover, since the parton

center-of-mass frame is unknown, no information is available about the motion of particle

A in the lab frame. Due to these limitations, the analysis should use observables that can

be reconstructed purely by measuring the jet four-momenta, and are independent of the

velocity of A in the lab frame. The only such observable is s, and the object of interest to

us is the distribution dΓ/ds. This is given by

dΓ

ds
=

1

64π3

s

m2
A

∫ EB+pB

EB−pB

dy

(mA − y)2
¯|M|2 , (2.5)
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where

EB =
m2

A + m2
B − s

2mA
,

pB =
√

E2
B − m2

B , (2.6)

and M is the invariant matrix element for the decay (2.1), with the bar denoting the usual

summation over the final state spins and other quantum numbers and averaging over the

polarization and other quantum numbers of A. This procedure should take into account

the polarization of A, if it is produced in a polarized state. In the examples of this paper,

production is dominated by strong interactions and A will always be produced unpolarized.

For a more detailed discussion of polarized decays see appendix A.

The quantity ¯|M|2 can be expressed in terms of the variables (2.2); substitutions

t → m2
A − smA

mA − y
, u → sy

mA − y
+ m2

B (2.7)

should be made in ¯|M|2 before performing the integral in eq. (2.5). Notice that eq. (2.5) is

valid in the rest frame of the particle A; however, since s is Lorentz-invariant, its Lorentz

transformation is a trivial overall rescaling by time dilation, and the shape of the distribu-

tion is unaffected. The strategy we will pursue is to use this shape to extract information

about the decay matrix element M, which is in turn determined by the spins and couplings

of the particles A and B.

To separate the effects of non-trivial structure of the decay matrix element from those

due merely to kinematics, it will be useful to compare the dijet invariant mass distributions

predicted by various theories to the “pure phase space” distribution, obtained by setting

the matrix element to a constant value. From eq. (2.5), the phase space distribution is

given by
dΓ

ds
=

1

32π3

|pB |
mA

∝
√

(s − m2
A − m2

B)2 − 4m2
Am2

B. (2.8)

This distribution1 is shown by a solid black line in figure 1. Notice that the phase space

distribution has an endpoint at s = smax, with the asymptotic behavior given by

dΓ

ds
∼ (s − smax)1/2 (2.9)

as the endpoint is approached.

3. Chiral structure in three-body decays: a toy model

To illustrate how the chiral structure of the couplings involved in the decay (2.1) can

be determined from the dijet invariant mass distribution, consider a situation when the

1Since we are concerned with the shapes of the dijet invariant mass distributions in various models

and not their overall normalizations, all distributions appearing on the plots throughout this paper are

normalized to have the same partial width Γ =
R

s
max

0

dΓ

ds
ds.
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s = m2
12

dΓ
ds

Figure 1: Dijet invariant mass distribution for the toy model 1 (blue/dashed) and model 2 (red/dot-

dashed) compared to phase space (black/solid) for M∗/mA = 1.5 and mB/mA = 0.1.

particles A and B are real scalars. Introduce a massive Dirac fermion Ψ of mass M∗ > mA,

and consider the following two models: model 1 defined by

L1 = yAAΨ̄PLq + yBBΨ̄PRq + h.c. (3.1)

and model 2 defined by

L2 = yAAΨ̄PLq + yBBΨ̄PLq + h.c. (3.2)

The matrix element for the decay (2.1) in model 1 is given by

∑

spin

|M1|2 = 2y2
Ay2

B(M2
∗ s)

(

1

(t − M2
∗ )2

+
1

(u − M2
∗ )2

)

, (3.3)

while in model 2 it is given by

∑

spin

|M2|2 = 2y2
Ay2

B

(

(m2
A + m2

B)tu − m2
Am2

B

)

(

1

t − M2
∗

+
1

u − M2
∗

)2

. (3.4)

The dijet invariant mass distributions in the two models are shown by the blue/dashed

line (model 1) and red/dot-dashed line (model 2) in figure 1. Their strikingly different

shapes are due to the angular momentum conservation law and to the different helicity

structure of the couplings. To understand this, consider this decay in the A rest frame.

In this frame, s = 2E1E2(1 − cos θ12). When s = 0, the quark and the antiquark travel in

the same direction, as illustrated in figure 2. Since A and B have zero spin, the sum of

the quark and antiquark helicities must vanish for this kinematics. In model 1, the quark

and the antiquark have the same helicity, and the decay is forbidden for s = 0; in model

2, it is allowed. In contrast, when s = smax, the particle B is at rest, and the quark and

the antiquark travel in the opposite directions. By angular momentum conservation, their

helicities must be equal. In model 1, this is the case, and the distribution approaches that of

pure phase space in the limit s → smax. In model 2, this kinematics is forbidden, the matrix

element vanishes at the endpoint, and the distribution behaves as dΓ/ds ∝ (s − smax)3/2.
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Model 1: same helicities Model 2: opposite helicities

Figure 2: Momenta (long arrows) and helicities (short arrows) in the A rest frame for s = m2

12
= 0

and s = m2

12
= smax in the two toy models of section 3.

q q̄

g̃ χ̃0

q̃L/R

q q̄

g̃ χ̃0q̃L/R

Figure 3: The Feynman diagrams for gluino three-body decay in the MSSM. Note that the crossing

of the quarks results in a relative minus sign.

4. Model discrimination: SUSY versus UED

In this section, we will show that measuring the shape of the dijet invariant mass distri-

bution arising from a three-body decay of a heavy colored particle may allow to determine

whether the decaying particle is the gluino of the MSSM or the KK gluon of the UED

model. We will begin by comparing the analytic predictions for the shapes of the two

distributions at leading order. We will then present a parton-level Monte Carlo study

which demonstrates that the discriminating power of this analysis persists after the main

experimental complications (such as the combinatioric background, finite energy resolution

of the detector, and cuts imposed to suppress SM backgrounds) are taken into account.

4.1 Gluino decay in the MSSM

We consider the MSSM in the region of the parameter space where all squarks are heavier

than the gluino, forbidding the two-body decays g̃ → q̃q. In this situation, gluino decays

through three-body channels. We study the channel

g̃(pA) → q(p1) + q̄(p2) + χ̃0
1(pB), (4.1)

where q and q̄ are light (1st and 2nd generation) quarks, and χ̃0
1 is the lightest neutralino

which we assume to be the LSP. (Note that many of our results would continue to hold if

χ̃0
1 is replaced with a heavier neutralino or a chargino. The only extra complication in these

cases would be a possible additional contribution to the combinatoric background from the

subsequent cascade decay of these particles.) The leading-order Feynman diagrams for the

process (4.1) are shown in figure 3; the vertices entering these diagrams are well known

(see for example ref. [9]). The spin-summed and averaged matrix element-squared has the

– 6 –



J
H
E
P
1
0
(
2
0
0
7
)
1
0
7

q q̄

G1 B1Q1
L/R

q q̄

G1 B1Q1
L/R

Figure 4: The Feynman diagrams for the KK gluon three-body decay in UED. Unlike in the

MSSM case, there is no relative minus sign, since what looks like a crossing of the quarks, is

actually equivalent to a crossing of the gauge bosons.

form (up to an overall normalization constant)
∑

spin

|MMSSM|2 = |CL|2F (s, t, u;ML∗) + |CR|2F (s, t, u;MR∗) , (4.2)

where

F (s, t, u;M) =
(m2

A − t)(t − m2
B)

(t − M2)2
+

(m2
A − u)(u − m2

B)

(u − M2)2
+ 2

mAmBs

(u − M2)(t − M2)
. (4.3)

Here mA, mB, ML∗ and MR∗ are the masses of the gluino, the neutralino, the squarks

q̃L and q̃R, respectively. In order to keep the analysis general, we will not assume any

relationships (such as mSUGRA contraints) among these parameters, and will always work

in terms of weak-scale masses. We also define

CL = T 3
q N12 − tw(T 3

q − Qq)N11 ,

CR = twQqN11 , (4.4)

where T 3
u = +1/2, T 3

d = −1/2, Qu = +2/3, Qd = −1/3, tw = tan θw, and N is the neu-

tralino mixing matrix2 in the basis (B̃, W̃ 3, H̃0
u, H̃0

d ). We have neglected the mixing be-

tween the left-handed and right-handed squarks, which is expected to be small in the

MSSM. Large mixing in the stop sector may be present, and is actually preferred by fine-

tuning arguments in the MSSM (see, e.g., ref. [10]). However, events with top quarks in

the final state are characterized by more complicated topologies and can be experimen-

tally distinguished from the events with light quarks that we are focussing on here. Since

light up and down type quarks are experimentally indistinguishable, the dijet invariant

mass distribution dΓ/ds should include both the contributions of up-type and down-type

squarks.

4.2 Decay of the gluon KK mode in the UED model

The counterpart of the decay (4.1) in the universal extra dimensions (UED) model is the

decay

g1(pA) → q(p1) + q̄(p2) + B1(pB), (4.5)

where g1 and B1 are the first-level Kaluza-Klein (KK) excitations of the gluon and the

hypercharge gauge boson, respectively. We ignore the mixing between B1 and the KK

2We assume that N is real. It is always possible to redefine the neutralino fields to achieve this. However

one should keep in mind that the neutralino eigenmasses may be negative with this choice.
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mode of the W 3 field, which is small provided that the radius of the extra dimension

is small, R ≪ 1/MW , and assume that the B1 is the LTP. As in the MSSM case, the

decay (4.5) is expected to have a substantial branching fraction when all KK quarks Q1
R

and Q1
L are heavier than the KK gluon. Note that in the original UED model [11], the KK

modes of all SM states were predicted to be closely degenerate in mass around M = 1/R;

it was however later understood [12] that kinetic terms localized on the boundaries of the

extra dimension can produce large mass splittings in the KK spectrum. Since such kinetic

terms are consistent with all symmetries of the theory, we will assume that they are indeed

present, and treat the masses of the g1, B1, Q1
R and Q1

L fields as free parameters.

The leading-order Feynman diagrams for the decay (4.5) are shown in figure 4. (We

ignored the contribution of the diagrams mediated by Qi
L/R with i ≥ 2, which are sup-

pressed by the larger masses of the higher KK modes.) The relevant couplings have the

form

g3G
1
µ

[

q̄γµPRQ1
R + q̄γµPLQ1

L + Q̄1
RγµPRq + Q̄1

LγµPLq
]

+

g1B
1
µ

[

Y (qR) q̄γµPRQ1
R + Y (qL) q̄γµPLQ1

L + Y (qR) Q̄1
RγµPRq + Y (qL) Q̄1

LγµPLq
]

, (4.6)

where Y (qL) = 1/6, Y (uR) = +2/3 and Y (dR) = −1/3 are the hypercharges. The structure

of the couplings between the KK gauge bosons and SM (or KK) quarks are unaffected by

brane-localized kinetic terms as long as these terms are flavor-independent.

The spin-summed and averaged matrix element-squared has the form (up to an overall

normalization constant)

∑

spin

|MUED|2 = Y 2
L G(s, t, u;ML∗) + Y 2

R G(s, t, u;MR∗) , (4.7)

where ML∗ and MR∗ are the masses of the left- and right-handed quark KK modes Q1
L and

Q1
R, and

G(s, t, u;M) =
h1(s, t, u)

(t − M2)2
+

h1(s, u, t)

(u − M2)2
+ 2

h2(s, t, u)

(t − M2)(u − M2)
, (4.8)

with

h1(s, t, u) = 4(tu − m2
Am2

B) +
t2

m2
Am2

B

(

2s(m2
A + m2

B) + tu − m2
Am2

B

)

,

h2(s, t, u) = 4s(m2
A + m2

B) − tu

m2
Am2

B

(

2s(m2
A + m2

B) + tu − m2
Am2

B

)

. (4.9)

4.3 Model discrimination: a simplified analysis

Armed with the expressions (4.2) and (4.7), it is straightforward to obtain the dijet invariant

mass distributions for gluino and KK gluon decays and compare them. For example,

the two distributions for a particular choice of parameters, along with the pure phase

space distribution, are shown in figure 5. While not as strikingly different as the two toy

models of section 3, the curves predicted by the MSSM and the UED are clearly distinct.

(The suppression of the UED distribution compared to phase space around s = 0 and

s = smax can be easily understood using angular momentum conservation, as explained in

– 8 –
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s = m2
12

dΓ
ds

Figure 5: Dijet invariant mass distribution for the UED (blue/dashed) and the MSSM (red/solid)

models, compared to pure phase space (black/dotted) for ML∗/mA = MR∗/mA = 1.5 and

mB/mA = 0.1.

appendix A.) In this section, we will perform a simplified analysis of the discriminating

power of these distributions, ignoring experimental complications such as cuts, finite energy

resolution, combinatoric and SM backgrounds, and systematic errors. We will return to

include some of these complications in the following section.

The distrubution in each model depends on a number of parameters, including the

mass of the mother particle mA, the mass of the invisible daughter mB, and the masses

of intermediate particles: (ũL, d̃L, ũR, d̃R) in the MSSM case and (U1
L,D1

L, U1
R,D1

R) in the

UED case. We assume that the partners of the up-type quarks of the first two generations

and the down-type quarks for all three generations are degenerate, and do not include

the diagrams with intermediate stops (or KK tops) since they produce tops in the final

state. Furthermore, since the Yukawa couplings for the first two generations are small,

it is safe to assume that m(ũL) = m(d̃L) in the MSSM and m(U1
L) = m(D1

L) in UED.

Since an overall rescaling of all masses does not affect the shape of the distribution, we

need four dimensionless parameters to specify the mass spectrum in each model; we use

the particle masses in units of mA. Experimentally, these four parameters may be very

difficult to obtain independently. A direct measurement of the masses of squarks/KK

quarks may well be impossible, since these particles may be too heavy to be produced

on-shell. Also, while it is easy to measure mA −mB (one can use the endpoint of the dijet

invariant mass distribution or other simple observables such as the effective mass [13] or its

variations [14]), it is much more difficult to measure mA and mB individually [15], which

would be required in order to obtain mB/mA. In this study, we will conservatively assume

no prior knowledge of any of these parameters. (Of course, if some independent information

about them is available, for example the overall mass scale is constrained by production

cross section considerations, this information can be folded into our analysis, increasing

its discriminating power.) In addition to the unknown masses, the matrix elements in the

MSSM depend on the neutralino mixing matrix elements, N11 and N12, although only the

ratio N11/N12 affects the shape of the distribution. Again, this parameter is difficult to

measure at the LHC, and we will assume that it is unknown; fortunately, the effect of

varying it is quite small.

To quantify the discriminating power of the proposed observable, we use the following
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Figure 6: Number of events required to distinguish the MSSM and the UED models based on the

invariant mass distributions of jets from three-body g̃/G1 decays.

procedure. We assume that the experimental data is described by the MSSM curve with

a particular set of parameters. We then ask, how many events (assuming statistical errors

only) would be required to rule out the UED as an explanation of this distribution? To

answer this question, we scan over 50000 points in the UED parameter space:

mB/mA = (0 . . . 0.5), M(Q1
L)/mA = (1.05 . . . 3.0),

M(D1
R)/mA = (1.05 . . . 3.0), M(U1

R)/mA = (1.05 . . . 3.0). (4.10)

For each point in the scan, we compute the Kullback-Leibler (KL) distance (see appendix B)

between the UED distribution with the parameters at that point, and the “experimental”

distribution. We then find the “best-fit UED” point, which is the point that gives the

smallest KL distance among the scanned sample. Finally, we compute the number of

events required to rule out the best-fit UED point at a desired confidence level.

The results of this analysis are shown in figure 6. The MSSM parameters used to

generate the “data” are: mB = 0.1mA, m(ũR) = m(d̃R) ≡ mR,m(ũL) = m(d̃L) ≡ mL,

N11/N12 = 1. The parameters mL and mR were then scanned between 1.05mA and 3mA,

and for each point in the scan the procedure described in the previous paragraph was per-

formed. Figure 6 shows the number of events required to rule out the UED interpretation of

the signal at the 99.9% c.l. (In the language of appendix B, this corresponds to R = 1000.)

In a typical point in the model parameter space, about 6000 events are required. For com-

parison, the pair-production cross section for a 1 TeV gluino at the LHC is about 600 fb,

corresponding to 12000 gluinos/year at the initial design luminosity of 10 fb−1/year. The

number of events useful for the measurement studied here depends on the branching ratio

of the decay (1.1). Since this branching ratio is generically of order one, we expect O(103)

useful events/year at the initial stages of the LHC running. Thus, at least under the highly

idealized conditions of this simplified analysis, this method of model discrimination is quite

promising in a wide range of reasonable model parameters.

– 10 –
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Figure 7: Number of events required to distinguish the MSSM and the UED models, as a function

of mB/mA of the “true” model.

We checked that the conclusions of this analysis are approximately independent of the

value of N11/N12 used to generate the “data”. They do, however, depend sensitively on the

ratio mB/mA: as mB/mA grows, the MSSM and UED distributions become more and more

alike. This is illustrated in figure 7, which shows the number of events needed to rule out

the “wrong” model (assumed to be UED) at the 99.9% c.l., as a function of mB/mA of the

“true” model (assumed to be the MSSM with m(ũR) = m(d̃R) = m(ũL) = m(d̃L) = 1.5mA

and N11/N12 = 1). The UED scan parameters are the same as in eq. (4.10), except that

we vary mB/mA = (0 . . . 0.9) in this case. It is clear that the discriminating power of the

dijet invariant mass distribution falls rapidly (approximately exponentially) with growing

mB/mA. This can be understood as follows. The main feature of the invariant mass

distributions that allows for model discrimination is the presence of the sharp dip at s = 0

in the UED case. According to the Goldstone boson equivalence theorem, if the daughter

particle B in the UED case is highly boosted, the decays into its longitudinal component

will dominate. The particle B is highly boosted in the vicintiy of s = 0, provided that the

mass ratio mB/mA is small; as mB/mA grows, the boost becomes less pronounced and

the decays into the longitudinal component of B are less dominant. This is illustrated in

figure 8, which compares the ratio of partial decay rates into the longitudinal and transverse

modes of B for mB/mA = 0.1 and mB/mA = 0.5. However, it is exactly the decays into

the longitudinal mode of B that are mainly responsible for the characteristic dip at s = 0;

this feature is far less pronounced for the decays into transverse modes. This means that

as mB/mA is increased, the dip gradually disappears, and the discriminating power of our

observable fades away.

We have also checked that the results of our analysis are approximately independent

of which model, MSSM or UED, is assumed to be the “true” one giving the experimental

data. For this one has to assume that the mass spectrum of the UED model is adjusted to

match the MSSM spectrum, which can be achieved by adding large brane-localized kinetic

terms for the gluons and quarks.

4.4 Model discrimination: a test-case Monte Carlo study

Given the large number of simplifying assumptions made in the analysis of the previous
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Figure 8: Ratio of the decay distributions of A into the longitudinal component of B to the

decay distributions into the transverse components of B for mB/mA = 0.1(solid) and mB/mA =

0.5(dashed). For low mB/mA the daughter particle is highly boosted at s = 0 and will mainly be

longitudinally polarized. As mB increases, the transeverse polarization becomes more important.

section, a skeptical reader may well wonder how meaningful the results presented above

are. In this section, we will repeat the analysis in a more realistic setting: effects of

experimental cuts and combinatoric background will be included. We will also bin the

distributions, to approximate the effects of finite jet energy resolution. Since this analysis

involves generating large samples of Monte Carlo (MC) events for each model, we were not

able to perform a scan over the model parameter space, as we did in the previous section.

Instead, we will present a test case, comparing the MSSM distribution for a single point in

the MSSM parameter space with the distribution generated by the “best-fit” UED model

for that point.

The chosen MSSM point has the following parameters: mA = 1 TeV, mB = 0.1mA =

100 GeV, M(Q̃L) = M(ũR) = M(d̃R) = 1.5 TeV. The corresponding “best-fit” UED point,

found by the procedure described in the previous section, has the following parameters:

mA = 1.06 TeV, mB = 0.15mA = 160 GeV, M(Q1
L) = M(u1

R) = M(d1
R) = 1.6 TeV. (Note

that the value of mA −mB , which can be determined independently, is the same for these

two points.) Using MadGraph/MadEvent v4.1 [16] event generator, we have simulated a

statistically significant sample (about 20000) of parton-level Monte Carlo events for each

model in pp collisions at
√

s = 14 TeV. The simulated processes are

pp → qqq̄q̄χ0
1χ

0
1 (4.11)

in the MSSM, and its counterpart,

pp → qqq̄q̄B1B1, (4.12)

in UED. With the chosen model parameters, the dominant contribution to the pro-

cesses (4.11) and (4.12) comes from pair-production of g̃/G1, followed by the three-body

decay (1.1), which is of primary interest to us. In the MC simulation, we did not demand

that the g̃/G1 be on-shell; the full tree-level matrix elements for the 2 → 6 reactions (4.11)

and (4.12) were simulated, so that the subdominant contributions with off-shell g̃/G1 are
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Figure 9: Left panel: Dijet invariant mass distributions from the MSSM reaction pp → qqq̄q̄χ0

1
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1

(green/light-gray), and its UED counterpart pp → qqq̄q̄B1B1 (blue/dark-gray), including realistic

experimental cuts and the combinatoric background (Monte Carlo simulation). Right panel: Theo-

retical dijet invariant mass distributions from a single gluino/KK gluon decay with the same model

parameters and no experimental cuts.

included. We imposed the following set of cuts on the generated events:

ηi ≤ 4.0; ∆R(i, j) ≥ 0.4; pT,i ≥ 100 GeV; E/T ≥ 100 GeV, (4.13)

where i = 1 . . . 4, j = i + 1 . . . 4 label the four (anti)quarks in each event. The first three

cuts are standard for all LHC analyses, reflecting the finite detector coverage, separation

required to define jets, and the need to suppress the large QCD background of soft jets.

The E/T cut is common to all searches for models where new physics events are charac-

terized by large missing transverse energy, such as the MSSM and UED models under

consideration. Detailed studies have shown that this cut is quite effective in suppressing

the SM backgrounds, including both the physical background, 4j + Z, Z → νν̄, and a va-

riety of instrumental backgrounds (see, for example, the CMS study [17]). While we have

not performed an independent analysis of the SM backgrounds, based on previous work we

expect that, with a sufficiently restrictive E/T cut, one will be able to obtain a large sample

of new physics events with no significant SM contamination.

The dijet invariant mass distruibutions obtained from the MSSM and UED MC samples

are shown in figure 9. The distributions are normalized to have the same total number

of events, since the overall normalization is subject to large systematic uncertainties and

we do not use any normalization information in our study. Note that for each MC event,

we include all 6 possible jet pairings; 4 out of these correspond to combining jets that

do not come from the same decay, and thus do not follow the theoretical distributions

computed above. In figure 9, we selected the jet pairs with s ≤ (mA − mB)2. This

selection can be implemented in a realistic experimental situation because mA − mB can

be measured independently. All pairs with larger values of s arise from the wrong jet
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pairings. However, some of the wrong jet pairs do have s in the selected range, forming a

combinatoric background to the distribution we want to study. Nevertheless, it is clear from

figure 9 that even after realistic cuts (4.13) and the combinatoric background are included,

the distributions in the two models retain their essential shape difference expected from the

simplified theoretical analysis of the previous section. Assuming that the experimental data

is described by the MSSM histogram and ignoring systematic uncertainties, we find (using

the standard χ2 test) that about 750 events would be required to rule out the UED curve

at the 99.9% c.l. Note that this number is smaller than those obtained in the previous

section, indicating that the performed cuts actually enhance the difference between the

MSSM and UED distributions. On the other hand, the actual discriminating power of the

analysis is likely to be somewhat lower than this estimate, since the systematic uncertainty

in the cut efficiencies was not taken into account here.

Our parton-level analysis does not explicitly take into account the smearing effect due

to the finite jet energy and direction resolution of a real detector. The hadronic calorimeter

energy resolution for a jet of energy E can be approximated by

δE

E
≈ 0.05 +

(

1 GeV

E

)0.5

, (4.14)

and is in the 5− 15% range for the jets that pass the cuts (4.13). We can crudely estimate

δs/s to be of order 2δE/E, evaluated at E =
√

s. The fractional uncertainty of the

measurement of s in our analysis is then roughly between 10% (for points with s ∼ smax)

and 30% (for points with low s). The bin size used in figure 9 is of the order of this

uncertainty for large s, and larger for small s, so we expect that the smearing introduced

by binning in our analysis provides a reasonable, if crude, description of the expected

smearing due to finite jet energy resolution. A more detailed investigation of this effect,

and other potential detector effects, would be required to fully understand the applicability

of the proposed method in a realistic experimental situation.

5. Conclusions

In this paper, we have investigated how the dijet invariant mass distributions from three-

body decays of a color-octed TeV-scale new particle, such as the gluino of the MSSM and

the KK gluon of the UED model, can be used to determine the nature of this particle.

The production cross section for the color-octet state at the LHC is expected to be large,

and the branching ratio for the three-body decays is significant whenever all squarks/KK

quarks are heavier than the gluino/KK gluon. If this is the case, the dijet invariant mass

distribution can be determined accurately at the LHC. The main complication of the

analysis is that the distributions in the two models we considered depend on a number of

parameters in addition to the spin of the decaying particle. However, even allowing for

complete ignorance of these parameters, we found the dijet invariant mass to be a very

promising tool for model discrimination.

The simplified analysis of this paper did not take into account a number of potentially

important effects. Since the particles involved are colored, the QCD loop corrections to the
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decay amplitudes are expected to be significant, and may modify the tree-level distributions

we studied. Also, our analysis is performed at the parton level and does not include detector

effects. While we expect that many systematic effects would cancel out since the analysis

relies only on the shapes of the distributions and is insensitive to the overall normalization,

a better understanding of the systematics is required. We believe that the promising

conclusions of this preliminary analysis motivate a more detailed study of these issues.
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A. Polarization analysis of the UED case

The main feature of the invariant mass distribution of the UED case, which makes it

distingishable from SUSY, is the dip at s = 0. This feature can be understood by analyzing

the decay amplitudes of the individual polarization components of the mother and daughter

particles and considering conservation of angular momentum. As shown with the two toy

models in section 3, conservation of angular momentum can lead to suppression of the

invariant mass distributions with respect to the pure phase space distribution (2.8) at s = 0,

as well as at s = smax. The couplings in the UED case have the same chiral structure as

the second toy model of section 3, with the quark and antiquark having opposite helicities.

The added complication in the UED case is that the mother and daughter particles are

massive spin one particles. We use mz(A) and mz(B) to denote the projections of the A

and B spins on the direction of the momentum p1 of the quark q. These operators have

eigenvalues mz(A),mz(B) = −1, 0,+1; the corresponding eigenstates have polarization

vectors ǫ−, ǫL, and ǫ+. The transitions among these eigestates are described by a 3 × 3

matrix of decay amplitudes. Using the UED lagrangian (4.6), we have evaluated these

amplitudes and obtained the dijet invariant mass distribution corresponding to each entry.3

These distributions, divided out by the pure phase space distribution (2.8), are plotted in

figure 10. At s = 0 the spin projections of the quark-antiquark pair sums up to zero,

and the final state has no angular momentum (see the right panel of figure 2). Therefore

the polarizations of A and B must be the same. This will result in a suppression of all

non-diagonal components in the transition matrix at s = 0, resulting in a dip there. At

s = smax, however, the spin projections of the quark-antiquark pair add up to mz = +1

(see figure 2). Thus the only allowed decays at smax are the longitudinal component of A

to mz(B) = −1 and mz(A) = +1 to the longitudinal component of B. Both features at

the ends of the distribution can be nicely observed in figure 10.

3For clarity, we only included the contribution of the diagrams with Q1

L in the intermediate state. The

diagrams with Q1

R lead to distributions that are identical, up to a parity reflection, to the ones presented

here.
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Figure 10: The invariant mass distributions for the decay of individual polarizations, divided by the

phase space distribution, for mB/mA = 0.1 and M/mA = 1.5 in arbitrary units. The polarization

vectors are along the momentum p1 of the outgoing quark q. Notice that at s = m2

12
= 0 only the

diagonal elements are unsuppressed due to angular momentum conservation, resulting in a dip of

the distribution.

B. The Kullback-Leibler distance

A convenient measure to quantify how much two continuous probability distributions differ

from each other is the Kullback-Leibler distance. (For a recent application in the collider

phenomenology context, see ref. [4].) In this appendix, we will briefly review this measure.

Suppose that the data sample consists of N events distributed according to the theo-

retical prediction of model T . Consider a second model, S, which predicts a distribution

different from T . We can quantify the discriminating power of our data sample by the ratio

of conditional probabilities for S and T to be true, given the data:

κ =
p(S is true|N events from T )

p(T is true|N events from T )
. (B.1)

This equation can be rewritten using Bayes’ theorem:

κ =
p(S|N events from T )

p(T |N events from T )

=
p(S)p(N events from T |S)

p(T )p(N events from T |T )

(B.2)

where p(S) and p(T ) are the priors — probabilities for S and T to be true before the

experiment at hand is conducted. (In this paper, we assumed that the MSSM and UED are
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a priori equally likely, so we set p(S) = p(T ) = 1.) Suppose that each event i (i = 1 . . . N)

is characterized by a single variable si (in our case, the dijet invariant mass). Since the N

events are independent, we have

κ =
p(S)

p(T )

∏N
i=1 p(s

(T )
i |S)

∏N
i=1 p(s

(T )
i |T )

=
p(S)

p(T )
exp

(

N
∑

i=1

log

(

p(s
(T )
i |S)

p(s
(T )
i |T )

))

.

(B.3)

For large N we can approximate
∑

N ≈
∫

dsdN
ds and use the normalization condition

dN
ds = Np(s|T ) to obtain

κ ≈ p(S)

p(T )
exp

(

N

∫

ds log

(

p(s|S)

p(s|T )

)

p(s|T )

)

=
p(S)

p(T )
exp (−N KL(T, S)) ,

(B.4)

where the Kullback-Leibler distance (also called relative entropy) is defined as

KL(T, S) :=

∫

ds log

(

p(s|T )

p(s|S)

)

p(s|T ). (B.5)

It follows that the number of events needed to constrain the probability of model S being

true, relative to the probability of T being true, to be less than 1/R, is given by

N ≈
log R + log p(S)

p(T )

KL(T, S)
. (B.6)

This number provides a convenient and physically meaningful measure of how different the

S and T distributions are.

Two properties of the Kullback-Leibler distance are worth mentioning in our context.

First, while this is not manifest from its definition, the KL distance is non-negative, and

zero if and only if T = S. Second, it is invariant under transformations s → f(s): for

example, it does not matter whether we consider the jet invariant mass distribution in

terms of s or mjj =
√

s.
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